\[\begin{align} \int \delta(\tau) d\tau &= 1 \\ [\tau] &= \mathrm{sec} \\ [\delta(\tau)] &= \frac{1}{\mathrm{sec}} = \mathrm{Hz} \end{align}\] \[\begin{align} \dot{q} &= \omega-b_g+\varepsilon_g \\ \dot{b}_g &= \eta_g\\ [\dot{q}] &= [\omega] - [b_g] + [\varepsilon_g] \\ [\dot{b}_g] &= [\eta_g] \end{align}\] \[\begin{align}{} [\omega] = [b_g] = [\varepsilon_g] &= \frac{\mathrm{rad}}{\mathrm{sec}} \\ [\dot{b}_g] = [\eta_g] &= \frac{\mathrm{rad}}{\mathrm{sec}^2} \end{align}\] \[\begin{align}{} [E[\varepsilon_g(t) \varepsilon_g^\top(t+\tau)]] &= \\ [\sigma_g^2\delta(\tau)] &= \frac{\mathrm{rad}^2}{\mathrm{sec}^2} (=[\varepsilon_g]^2) \\ [\sigma_g^2] &= \frac{\mathrm{rad}^2}{\mathrm{sec}^2}\frac{1}{\mathrm{Hz}} \\ [\sigma_g] &= \frac{\mathrm{rad}}{\mathrm{sec}}\frac{1}{\sqrt{\mathrm{Hz}}} \\ &= \frac{\mathrm{rad}}{\mathrm{sec}}\sqrt{\mathrm{sec}} \\ &= \frac{\mathrm{rad}}{\sqrt{\mathrm{sec}}} \\ &= \mathrm{rad}\sqrt{\mathrm{Hz}} \\ [E[\eta_g(t)\eta_g^\top(t+\tau)]] &= \\ [\sigma_{bg}^2 \delta(\tau)] &= \frac{\mathrm{rad}^2}{\mathrm{sec}^4} (=[\eta_g]^2) \\ [\sigma_{bg}^2] &= \frac{\mathrm{rad}^2}{\mathrm{sec}^3} \\ [\sigma_{bg}] &= \frac{\mathrm{rad}}{\mathrm{sec}}\sqrt{\mathrm{Hz}} \\ &=\frac{\mathrm{rad}}{\mathrm{sec}^2}\frac{1}{\sqrt{\mathrm{Hz}}} \\ [\sigma_a] &= \frac{\mathrm{m}}{\mathrm{sec}^2}\frac{1}{\sqrt{\mathrm{Hz}}} \\ [\sigma_{ba}] &= \frac{\mathrm{m}}{\mathrm{sec}^3}\frac{1}{\sqrt{\mathrm{Hz}}} \end{align}\]